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Abstract

A two stage calibration method for the parallel robot
Delta 4 is presented. It allows one to identify the offsets on
the three first joints and the absolute location of the robot
base. It involves a cheap displacement sensor and
dedicated targets which can be easily moved on the work
area. Intensive simulations show the robustness of the
protocol and experimental results validate this procedure.

1    Introduction

Many comprehensive studies and works have been
made in the area of parallel robots [12], [17], [15]. This is
due to their interesting features by comparison with serial
robots: great dynamic capabilities and rigidity, a high
positioning repeatability, and so a high positioning
accuracy if the actual parameter values are known.
The loss of accuracy of such structures is mainly due to
the joint offsets, the manufacturing tolerances and the
errors of the robot registration in the environment. The
solution to compensate this loss of accuracy is known as
robot calibration. This allows one to identify the real robot
kinematic parameters to compensate the nominal
geometric model.
Several papers can be found about the calibration of serial
robots [8], [19], [13]. Nevertheless, few papers have been
published about the calibration of parallel robots. Bennett
and Hollerbach, [1] use the approach they have developed
about the autonomous calibration of single closed loop
kinematic chain to calibrate the RSI-6DOF wrist. The
offsets and the gain of this structure are identified. Using
the same approach Nahvi, Hollerbach and Hayward [14]
identify the joint offsets and three other kinematic
parameters of a 3 degree of freedom (d.o.f.) platform. Like
in the previous work, experimental results are given and
compared to those identified using an external calibration
device.
Other works have been carried out on the calibration of the
Stewart platform. Zhuang and Roth [21] propose a new
solution but they conclude that the main drawback of their
method is that its parameters can not be identified
globally. Masory, Wang and Zhuang [10] develop a more
robust method to identify the platform parameters. No
experimental studies are performed but extensive
simulations including measurement noise show that the

positioning error of the platform can be reduced by one
order of magnitude at least. Geng and Haynes [7] simulate
a two stage calibration procedure of the Stewart platform.
Recently Olivers and Mayer [16] propose and simulate a
method to identify the platform parameters globally. They
use the singular value decomposition to eliminate the
redundant parameters of the model.
None of these methods takes into account the registration
of the robot in the environment. So the location errors of
the robot base which occur when the robot is first installed
or is moved on its work area cannot be compensated.
Moreover no experimental results are given about the
three last methods.
We have developed a method to calibrate the robot Delta
4. This method is efficient and can be easily carried out in
real environment. It allows to identify the robot location in
the work area and the joint offsets. These parameters are
subject to change after each maintenance operation and
when the robot is moved on the line.
The other kinematic parameters whose influence on the
robot accuracy is less important, are not taken into
account. Therefore, in our approach the robot is supposed
to have been calibrated before (the leg lengths and the
angles between two successive axes may be considered as
stationary along the robot life).
The used measurement device is an inexpensive laser
displacement sensor. It operates in a range finder mode or
in a detection mode in both cases on dedicated targets.
These targets are easily placed and moved in the work area
due to their small dimensions.
The first section of this paper describes the delta robot and
the used kinematic modeling. The specifications of the
procedure are then developed. Simulation studies which
are presented next have been performed to analyze the
sensitivity of the procedure to parameters such as sensor
location and orientation, target setup and number, and
measurement noise. They allow us to validate modeling
approximations. Experimental validation on the robot
Delta 4 is presented in the last part.

2    The robot Delta 4

The Delta 4 is a very fast parallel robot with 4 d.o.f.
suitable to pick and place works. It can move and place
small weight objects with high speed along trajectories
about 200 mm long.



Its fully parallel structure [18] complies with this kind of
applications. Mechanism specifications are given in [4][5].
A simplified view is given in figure 1. The robot consists
of a base plate, a traveling plate and three identical
kinematic chains made of two parts:

- the arm actuated by one of the three motors secured
on the top plate and distributed on a circle at 120
degrees mutually.
- the lower parallelogram, which drives the traveling
plate.

Thus the traveling plate always remains parallel to the
base plate and the translational motions result from the
combined motions of the three actuators.
The end effector is secured on the mobile plate and it is
connected with a fourth actuator secured either on the top
plate or directly on the traveling plate.

-

Fig. 1: the robot Delta 4

3    Modelization

Several approaches have been developed to establish
direct and inverse kinematic models [20] [6]. We will use
here the model proposed by Pierrot [18].

4    Calibration procedure

As in our previous works [3] [11], the idea is to
identify a restricted set of parameters at the time instead of
identifying all the parameters globally.
In this section we present the procedures used to identify
the three offsets q1off, q2off, q3off of the three first joints, the
position errors dx, dy, dz and the orientation errors dx, dy, dz

of the robot base with respect to the environment. These
errors are assumed to be small. Two procedures allow one
to identify two sets of parameters: (1) dx, dy, dz, q1off, q2off,
q3off and (2) dx, dy, dz. Note that the offsets can also be
identified with the second set of parameters. The offset on
the fourth joint q4off is not identified since it has no
influence on the end effector position and a negligible
influence on its orientation along z4 axis.
The frames defined to present the procedures are (figure
2):

Rw: the reference frame associated to the work cell,

Rb: the base plate frame tied to its center Ob,
Rt: the mobile plate frame tied to its center Ot,
Rc: the sensor frame associated to the point Oc, the zc
axis is on the sensor optical axis.
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Fig. 2: The different transformations used

Using homogeneous transformations matrix iTj [2] to
describe in the frame Ri the coordinates of a vector given
in the frame Rj we can define wTb, 

 bTt, 
 tTc:
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[X0 Y0 Z0]
T are the nominal coordinates of Ob in Rw.

The coordinates of [Xt Yt Zt]
T are computed using the

direct kinematic equations (DKE) taking into account the
offsets q1off, q2off, q3off:

[ ] ( )X Y Z DKEt t t

T

off off off= + + +θ θ θ θ θ θ θ1 1 2 2 3 3, , ,  4

qi is the ith joint variable.
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Xc=0, Yc=0, Zc are the nominal coordinates of Oc; the
sensor optical axis is aligned with the zt axis of Rt.

4.1    Identification of ddddx, ddddy, dz, qqqq1off, qqqq2off, qqqq3off

P is an horizontal support plane accurately positioned
in the work area. Its altitude in Rw is hP. The robot is
driven to reach the knots Ni of a virtual horizontal pattern
grid whose altitude in Rw is hm (figure 3).
For each knot Ni the distance di between the sensor head
Oc and the plane P is recorded
Using the previous definitions of wTb, 

bTt, 
tTc, the matrix

wTt is computed:
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Fig. 3: Identification of dx, dy, dz, q1off, q2off, q3off
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If the sensor optical axis is aligned with the zc axis of Rc

frame, one can calculate the theoretical distance di

between Oc [X' Y' Z'] T and the plane P along the zc

direction whose components in Rw are [dy -dx 1]T.

( ) ( )( )d Z hi P y x
' '= − ⋅ + − +δ δ2 2 21

neglecting the second order terms leads to:
( )d Z hi P

' '= −

The vector of parameters p1=[dx dy dz q1off q2off q3off]
T that

has to be identified is the one that minimizes for all the
number M of measurement points Ni:
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[q1i, q2i, q3i, q4i]
T is the nominal configuration given to the

robot controller to reach Ni (no location errors and no
offsets are taken into account).
The non linear minimization problem is solved using
MATLAB library.

4.2    Identification of dx, dy, ddddz, (qqqq1off, qqqq2off, qqqq3off)

A number I of cylinders are plugged on the plane P.
The positions are uniformly distributed on a circle Ck

(figure 4). So the position and the orientation of each
cylinder are accurately known in Rw. The robot is moved
so the center of the traveling plate Ot describes a circle Ck

'

above the cylinders.
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Fig. 4: Identification of dx, dy, dz, (q1off, q2off, q3off)

The laser sensor secured on the mobile plate detects the
first edge B1j of the cylinder j. Then the robot moves to
detect the second one B2j and so on for each cylinder. The
configurations q1ij, q2ij, q3ij (i=1, 2 ; j=1, ..., I) are stored.
Using the definition of  wTc, Bij coordinates are:
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Using dx, dy, dz, q1off, q2off, q3off values identified with the
first procedure, the parameter vector p2=[dx dy dz] to be
identified is the one that minimizes for all cylinders:
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 (i=1, ..., I ; j=1,2)

xci, yci are the coordinates of the ith cylinder center in Rw.
As in the previous procedure, this non linear problem is
solved using MATLAB library.
Note that the offsets can also be included in the vector
p2=[dx dy dz q1off q2off q3off]

T to be identified with dx dy dz.
This allows one to verify the results given by the first
procedure.

5    Discussion

In the previous section, the location errors of the
sensor on the mobile plate are not taken into account.
Practically the laser sensor is roughly secured on the plate
in order to save time and to reduce the cost of fixturing.
Thus, the sensor head is placed with dxc, dyc, dzc position
errors and with dxc, dyc, dzc orientation errors.
Therefore, neglecting second order terms, the matrix wTc

becomes:
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The direction of the laser optical axis along zc and the
coordinates of the sensor center Oc are modified so that



the sensor optical axis is not aligned with zt. This
introduces a bias on the coordinates of the measured
points on P and on the cylinder edge coordinates.
To compensate these errors [11], for each point Ni and for
each edge Bij two measurements are performed
respectively at the position q4 and q4+p of the mobile plate
with respect to z4 axis. The value of di and q1off, q2off, q3off

used in the minimization algorithm is the mean value of
the measurements performed respectively at the q4 and
q4+p sensor position.
In the next part we validate these hypotheses. We show
that the identification procedure of dx, dy, dz, q1off, q2off,
q3off is robust to location errors of the sensor on the end
effector. We also discuss the choice of the number of
measurements M. We finally analyze the parameter
sensitivity to the measurement noise.

6    Simulations

a) Influence of the sensor location on the end effector
The purpose of this simulation is to evaluate the sensitivity
of the parameters dx, dy, dz, q1off, q2off, q3off to the
variations of the location errors of the sensor on the end
effector. For example, figure 5 shows the variations of
simulated parameters dxs, q1offs when dxc or dxc vary. Each
figure corresponds to two measurements of di at q4 and
q4+p. The nominal values of simulated parameters are
dxn=1°, dyn=-1.5°, dzn=-1 mm, q1offn=-1°, q2offn=1.5°,
q3offn=-1°. The parameters of the experimental setup used
in this simulation are hP=-650 mm, M=100 (grid pattern
dimensions: 200x200 mm), hm=-530mm, Zc=-90 mm.
The noise introduced on each computation of di is a
randomly distributed and non biased noise which range is
±0.1 mm. The simulation shows the robustness of the
procedure for parameters dx, dy, q1off, q2off, q3off when two
measurements are performed at q4 and q4+p. Nevertheless
the location error of the sensor dz is not compensated.
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Fig 5: Influence of dxc and dxc errors
b) Influence of the number of measurements
The noise features are the same as in the previous
simulation. No error is introduced on the sensor location.
Simulations run for M=9, ..., 256. Simulations show that
the accuracy of the simulated parameters is not really
sensitive to the number of measurements. Nevertheless the
grid patterns with 64 and 100 points seem to be more
accurate.

c) Influence of the measurement noise
The previous simulations have been carried out
introducing random errors on parameter di whose range is
±0.1 mm. The purpose of this simulation is to analyze the
sensitivity of the parameters to the measurement noise.
Random errors on parameter di are introduced in the
process. Figure 6 shows the sensibility of parameters dxs,
dz, q1off when the range of the random errors on di varies
from 0 to 0.5 mm. This simulation shows that the random
errors should be less than 0.3 mm to have the parameters
accuracy about ±0.1 mm for the dz error and ±0.1° for the
orientation and the offsets errors. The resolution of the
sensor (2 mm) is very good but the surface state on the
plane P has to be carefully checked since it may have a
non negligible influence on the parameters.
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Fig 6: Influence of the noise on dxs, dz, q1off

d) Conclusion
These simulations show that the protocol for the
identification of dx, dy, q1off, q2off, q3off is robust to the
sensor location errors on the end effector and to the
number of measurements. Besides, the noise sensitivity
studies show that the procedure is robust if the random
errors on di are less than ±0.3 mm.
Similar simulations have been performed for the
identification of dx, dy, dz, (q1off, q2off, q3off). They show
that the procedure is robust as well. Simulations about the
noise sensitivity have shown that the procedure is robust if
the random errors on the measurements of q 1i, q2i, q3i

relative to the detection of the cylinder edges are less than
±0.25°.

7    Experimental validation

a) Experimental set up
The experimental setup is shown in figures 1 and 2. A
rigid plate is used as the measurement plane P. Making use
of drilled holes whose coordinates are precisely known in
the frame associated to the plate, several cylinders can be
accurately plugged on different circles Ck. The plate is
secured on a precision turntable providing Ox, Oy fine
translational motions along x and y axis and Ox, Oy, Oz

fine rotational motions about x, y and z axis. So the
location errors are directly given to the plane P rather than
to the robot base. The offsets are introduced on the robot
controller.
The sensor is a Keyence LB-12 laser displacement meter
(measuring range 30mm-50mm, resolution 2 mm, linearity
0.5%). The controller is the LB-72 unit. The sensor head

is housed in a very compact unit which can be easily
mounted on the end effector. Data acquisition is done with
a PC via an A/D RTI 800 board.
b) Sensor calibration
The sensor is secured on the end effector in such a way
that the location errors (dxc=dyc=dzc=0 and dxc=dyc=dzc=0)
are minimized. For both procedures distance between the
sensor head and the targets is close to 40 mm. For the
identification of dx, dy, dz, q1off, q2off, q3off, it comes that the
sensor has to be oriented in such a way that the plane
formed by the emitted and received beams is orthogonal to
the displacement direction. Furthermore, to increase the
sensitivity of the sensor, for the procedure 1 the plane is
painted in white whereas for the procedure 2 the top of
cylinders are painted in white and a black support is put on
plane P.
c) Experimental results
Since the absolute orientation of the support plane and the
absolute location of the cylinders on the plane are not
known in Rw, a first series of measurements is done in
order to identify a reference orientation and position of the
plane and a reference location of the cylinders.

d) Identification of  dx, dy, dz, q1off, q2off, q3off

Several grid patterns with a different number of knots M
are used. For each knot, two series of 30 measurements Di1

and Di2 are performed for the sensor position q4 and q4+p.
The mean values mi1, mi2 and the standard deviations si1,
si2 of Di1 and Di2 are computed, so di is defined as:
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When using the precision turntable the rotation angles dxP

and dyP are given to the plane P. The turntable does not
allow to give dzP errors so this parameter is not identified.
The procedure is carried out in less than 8 minutes. The
identified parameters are shown in table 1.
These results show that with the proposed procedure, dx,
dy, q1off, q2off, q3off may be accurately identified. The worst
parameter accuracy is ± 0.17° for dx, dy and ±0.31° for the
offsets.

M dxP °
nominal

dyP °
nominal

q1off °
nominal

q2off °
nominal

q3off °
nominal

dxP °
identified

dyP °
identified

q1off °
identified

q2off °
identified

q3off °
identified

49 0 -1 0 0 0 0.03 1.11 0.11 -0.18 0.12
121 -1 0 0 0 0 -1.12 -0.05 0.07 -0.13 0.13
49 1 0 0 0 0 1.12 0.12 0.16 -0.14 0.28
121 0 2 0 0 0 -0.17 1.91 0.12 -0.17 0.23
121 -2 0 0 0 0 -2.07 -0.12 0.26 -0.19 0.27
121 -0.5 1 0 0 0 -0.41 1.07 0.09 0.04 0.22
121 0 0 2 -1.5 -2 -0.07 0.12 2.18 -1.39 -1.84
121 0 0 2 2 0 0.11 0.07 1.76 1.82 0.12

Table 1: Experimental results for dx, dy, q1off, q2off, q3off



e) Identification of dx, dy, dz, (q1off, q2off, q3off)
The plane P is oriented in such a way that dxP=dyP=0 ; no
offsets are introduced in the robot controller. So using the
first procedure, the real values of the robot parameters dx,
dy, dz, q1off, q2off, q3off are computed. Then dxP, dyP, dzP are
given to the plane P where 8 cylinders are plugged
uniformly on the circle Ck whose radius is 200 mm. The
procedure is run in less than 15 mn, then using dx, dy, dz,
q1off, q2off, q3off identified with the first procedure the
parameters dx, dy, dz are computed . Experimental results
are shown in table 2. Here again, they validate the
proposed procedure.

dxP mm
 nominal

dyP mm
nominal

dzP°
 nominal

dxP mm
identified

dyP mm
identified

dzP °
 identified

0 -1 0 0.13 -1.13 -0.05
0 2 0 0.06 2.08 -0.04
2 3 0 2.16 2.89 0.00
2 -5 -1 2.07 -4.87 -0.96
-2 -3 0 -1.86 -3.09 0.02
-3 4 1 -3.07 3.97 1.16
5 3 3 4.95 2.78 2.82
2 -1 0 1.87 -1.13 -0.03
-5 -3 0 -5.20 -3.06 0.07
1 -1 1 0.82 -1.12 1.01

Table 2 Experimental results for dx, dy, dz

8    Conclusion

We have developed a two stage calibration method to
identify on one hand the offsets on the three first joints of
the parallel robot Delta 4 and on the other hand the robot
registration in the environment. This procedure is well
suitable for Delta 4 robot but it may be used for other
structures. It is easy to implement on the shop floor. It
involves an inexpensive displacement sensor.
Intensive simulations have been performed to evaluate the
sensitivity with respect to the sensor location errors, the
measurement number and the measurement noise. They
show that identification procedure is robust with respect
to these variations. Experimental results validate these
procedures. Current works concern the optimization of
these procedures in terms of accuracy.
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